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Abstract—Susceptible-Infected-Recovered (SIR) models 

have been used to study the spread of COVID-19. In previous 

works, the standard SIR model has been expanded to include 

new states as well as geographical level transmission dynamics. 

We present an extended model using the Cell-DEVS formalism 

that simulates the effect asymptomatic COVID-19 cases have on 

a population. The model is an easily adaptable framework that 

allows for rapid-prototyping and modifications. We exemplify 

how to build and easily change the model using public health 

units of Ontario as a case study. The results show the effect 

asymptomatic carriers have on overall case counts and 

exposures at the provincial level as well as at the city level. 

Keywords—Simulation, Cell-DEVS, Asymptomatic, 

pandemic 

I. INTRODUCTION 

COVID-19 has been at the forefront of public health since 
late 2019. Despite the efforts of health agencies, in June 2021 
many countries are coping with second and third waves of 
COVID-19 cases [1]. These new waves, often associated with 
variants, are typically reaching higher peaks than the first 
wave in 2020 [1], [2]. Some of the research into the causes of 
secondary waves suggests that they could be due to the 
asymptomatic carriers—that is those where the individual 
does not show symptoms and thus may be unaware that they 
are infected, do not take precautions [3], and thus may spread 
the disease to at risk individuals unknowingly. The proportion 
of asymptomatic carriers can be as high as 80% [3]–[7]. Short 
of regular testing of the entire population, which did not prove 
overly effective in at least some countries attempting it, one 
of the ways of estimating the prevalence of asymptomatic 
carriers is through modeling and simulation [8].  

Health agencies and research organizations have long 
relied on modelling and simulations e.g., predictive models 
provide estimates of future trends; to assess potential 
effectiveness of various disease control methods such as lock 
downs, mandatory quarantines, social distancing [9]; etc. Of a 
particular usefulness can be so called geographical models 
which allow for geo-located simulations of various 

phenomena; their resolution typically range from continental 
models to city neighborhoods [10]. These disease control 
models use different inputs that characterize the disease being 
modelled, which can change depending on the evolution of a 
disease. Rapid prototyping allows for modelers to add new 
characteristics, as well as adapt the model to fit their evolving 
needs, with minimal changes. These changes should be 
efficient and accessible. This approach also enables one to 
incorporate additional critical parameters not known when the 
modelling commenced. 

One of the most popular epidemiological models, 
introduced by Kermack and McKendrick in 1927 [11], 
classified the population in “compartments”: Susceptible to 
the disease, Infective (i.e., can transmit the disease), and 
Recovered (SIR). Modifying the parameters of this type of 
model, public health officials can investigate how much a 
disease might continue to rise depending on the public health 
measures put in place. They can use these simulation results 
to plan public health measures before case counts reach an 
uncontrollable point. In these models, we can create a new 
compartment to incorporate asymptomatic infections and 
predict the impact they will have on symptomatic case counts.  

SIR-type geographical models have been the forefront of 
disease growth and spread prediction. With the emergence of 
the SARS-Cov-2 virus, these models have become relevant, 
being used to track and monitor the potential spread of the 
disease. For instance, each component in city areas can use its 
own defined population and characteristics, allowing for 
accurate representation of a given geography. For example, 
[7] shows the negative effects of asymptomatic COVID-19 
infections within homeless shelters. Our model could be used 
to geographically locate homeless shelters within specific 
neighborhoods and simulate the effect homeless shelters on 
surrounding neighborhoods. This idea can be adapted for any 
geographical level, from small city neighborhoods to 
state/provincial, or even larger simulations. Geographical 
modelling allows to simulate what regions are most impacted 
by a given infection. These insights can help create improved 
public health measures. Rapid prototyping allows for public 



 

 

health officials to efficiently change the characteristics of a 
disease and re-run simulations showing different scenarios 
depending on the given characteristics. These changes allow 
for rapid prototyping a virus as it evolves over time.  

The main contribution of this research is the definition of 
an extension of the traditional SIR model, specifically a 
geographical Susceptible-Exposed-Asymptomatic-Infective-
Recovered-Deceased (SEAIRD) model whose aim is to 
incorporate advanced behavior for COVID-19. Our 
implementation allows users to run the model at a user-
defined region level and visualize how COVID-19 might 
spread through a city, town, or country. The model is designed 
using the Cell-DEVS formalism [12] and implemented using 
the Cadmium simulator [13]. The model’s adaptable 
framework allows for accessible rapid-prototyping and 
modifications. We implemented the asymptomatic cases 
using a basic infectious/asymptomatic ratio value that can be 
input by the user. The asymptomatic carriers expose more 
individuals than their non-asymptomatic counterparts. This is 
intended to represent the effect of not taking adequate 
precautions due to the absence of awareness. Users can also 
input a described group of neighborhoods and run the model 
through the neighborhoods, allowing for visualization of how 
a disease might spread through a city, town, or country. We 
use a case study where the model’s neighborhoods are defined 
as the public health units of Ontario. Our results show how an 
asymptomatic set of carriers can lead to sharper increases in 
case counts resulting in a change to the total numbers of cases 
that a population would experience. Our model provides a 
framework to rapidly prototype disease spread in their 
neighborhood where asymptomatic infections can be 
considered and incorporated where necessary. 

II. BACKGROUND 

A. Introduction to SIR-type Models 

 Following Ross and Hudson [14]–[16], Kermack and 
McKendrick [11] defined a model that classified a given 
population into three “compartments”: Susceptible, 
Infectious, and Recovered (SIR). They defined how 
individuals within a population could move from one 
compartment to another over time. Kermack and 
McKendrick’s work defined the framework and mathematics 
that SIR-type models continue to follow today. This standard 
SIR model has evolved over the years to incorporate more 
advanced disease spread rules and more compartments. The 
simplest of these evolutions is the SIRD model which 
incorporates a Deceased (D) compartment and includes death 
factors and fatality rates [17]. SEIRD models add an Exposed 
(E) state used as a transition from susceptible to infected [18]. 
Over time, these models became significantly more advanced, 
having different, complex compartments such as quarantined 
[19], hospitalized [20], diagnosed [18] among others. 

B. Asymtomatic infection and SIR-type Models 

In medicine, a asymptomatic patient is one that tests 
positive for a disease but shows no symptoms [19]. 
Asymptomatic carriers can shed the disease to those around 
them, but generally, at a slower rate than those that are 
symptomatic [3]. The main issue is that asymptomatic carriers 

do not know they have the disease; thus, they may not follow 
the same procedures as someone who knows they are 
infectious would. For example, someone who has a cough, 
generally, will try and cover their mouth to protect those 
around them, if they did not have any noticeable symptoms, 
they will spread the disease unknowingly [7].  

The asymptomatic effect has caused problems in disease 
tracking and planning for many diseases including COVID-
19 [4]–[6]. The proportion of asymptomatic infections that 
make up the COVID-19 pandemic has been widely debated, 
and it may been anywhere from 4%-80% [3]–[7]. The 
problem limiting these studies is how the authors validate and 
reliably collect data. Studies which focus on asymptomatic 
have the difficulty of finding these infections as the carriers 
are not evaluated. With the possibility of having a significant 
amount of COVID-19 asymptomatic carriers shedding the 
disease to those around them, it is crucial to understand how 
much of an impact they are having on overall case counts. The 
next challenge is tracking the impact of asymptomatic cases 
on the overall true case count. Tracking these cases and seeing 
who they infect is even harder. This leaves modelers with the 
job of estimating how many asymptomatic carriers are in each 
population and how many people they are exposing. 

There have been different studies on the integration of the 
asymptomatic state in disease spread modelling. One of these 
studies [20] proposed a SIARD (Susceptible, Infected, 
Asymptomatic, Recovered, Dead) and a SQIARD model 
(where Q is the Quarantine state). The SIARD model uses a 
simple transition from the susceptible state to the infectious or 
asymptomatic state using a given infectious rate. The 
SQIARD model incorporated the asymptomatic state as a 
transition from the quarantine state. The model splits the 
population that moves from the quarantine state to the 
asymptomatic or infectious state using specific rates. The 
model provides results that resemble real world case counts 
using different countries. Another study [21] proposed an 
advanced, SIDARTHE model, which also includes states for 
diagnosed (D), ailing (A), recognized (R), threatened (T), 
healed (H) and extinct (E) individuals. Asymptomatic 
individuals are added by using multiple disease subcategories 
under one state: asymptomatic is a subcategory of the infected 
state. When an individual moves from susceptible to infected 
they can become asymptomatic, infected, or undetected. The 
asymptomatic individuals will then move to either diagnosed, 
ailing or healing. If an asymptomatic individual becomes 
detected, they are considered diagnosed asymptomatic. 
Asymptomatic individuals who move to ailing develop 
symptoms and become undiagnosed symptomatic, and those 
who move to healing will recover from the infection. The 
proportion of individuals who move to each state is defined 
by the states specific transition rate, i.e., those who move from 
asymptomatic infected to ailing is denoted by the probability 
for a host to develop symptoms. The authors also remark the 
importance of those who are asymptomatic or undetected as 
they will not be isolating like those who are known infectious. 

In [18], the authors  present a SEAIRD model that showed 
a similar transition method as those described previously. 
They use an asymptomatic state where an asymptomatic rate 
α is defined to split the infected population into infectious or 



 

 

asymptomatic. Susceptible individuals can become exposed 
to the virus (E) or remain in the susceptible (S) state. Exposed 
individuals can become asymptomatic (A = αE) or infectious 
(I = α (1- E)). The model showed how asymptomatic cases 
can affect the rate and magnitude of new infectious cases in a 
population. The authors also described a more advanced 
model called the SEAIRD-Control model where a quarantine 
state, and a hospitalization state have been introduced.   

Although our focus is on the influence of asymptomatic 
cases, these extra states (quarantined, hospitalized, etc.) can 
be considered as future additions to our model. None of the 
models above include the geographical aspect of the disease 
where the relationship between two neighborhoods impacts 
how the disease can spread. The model we are proposing in 
this paper addresses this idea and incorporates geographical 
attributes in disease transmission dynamics.  

C. SIR-type Models including geographical aspects 

 Another advancement made in SIR modelling was the 
addition of geographical information. Sattenspiel and Dietz 
[10] describe a model for the spread of infectious diseases 
among geographic regions. They describe how individuals 
can become mobile and be in contact with individuals in other 
regions, resulting in the spread of a disease across regions. 
They show how geographical information can complement 
the standard SIR model as well as lead to better, more defined 
results. In [22], the authors describe a geographical Cell-
DEVS SIR model. Their model is based on [23] to simulate 
the spread of epidemics in a geographical based 2D cell space. 
The model has described that at time t, a given cell (i, j) has a 
given population Nij. Each cell stores the ratio of individuals 
in each state. The SIR model described in [23] and translated 
to Cell-DEVS in [22] uses a geographical correlation factor 
defined by the shared boundaries between two cells. The 
correlation factor is a method the model uses to link two 
regions together to allow for interaction between their 
populations. This is not necessarily the most accurate method 
as it does not take other key factors into account. For example, 
it does not consider dense population areas and workplace 
hubs such as downtown Ottawa. Adding transportation 
networks [24] or human movement and mixing models [25] 
showing how a population move from one region to another 
would give more accurate results. However, the method has 
been shown to produce accurate results and it is easily 
adaptable for geographical simulations [23]. Being able to 
quickly adapt a model to receive new data is crucial for rapid 
prototyping, and this model allows user to change both the 
geographical level they are simulating as well as the disease 
characteristics. The equations for the correlation factor 
between neighborhoods (i.e., cells) are as follows: 
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Equation (2.1) describes the weighted correlation factor 

wij, which uses the two values, the shared boundary length 
between cells i and j (Zij, Zji) in both directions, divided by the 
total boundary length of cells i and j (li, lj). This method states 
that the correlation for i, when moving to j, is the same as j 

moving to i. Finally, equation (2.2) is used to set the 
geographical correlation factor between cell i and j, this will 
be used in Section III. The model developed in [22] also 
includes parameters that define hospital capacities and 
lockdowns correction factors. 

In [22], the authors extend the geographical model 
described in [23] to incorporate deaths and the ability for a 
cell’s recovered populations to become re-infected [26][27]. 
In [28], the authors extend the model with the ability for a 
cell’s population to move from the susceptible state to an 
exposed state before becoming infected, developing the 
SEIRD model presented that was used as starting point for the 
SEAIRD model framework we propose in this research. When 
adding the exposed state, the rate at which a cell’s population 
would move from susceptible to exposed remained 
unchanged. But, when the population moved from susceptible 
to exposed, a new value was considered, the incubation rate, 
ε. The exposed state is an important addition to the model as 
it allows for incubation rate simulations to be added. The 
model can simulate realistic calculations showing the time it 
takes for someone to be exposed to when they show 
symptoms. The problem with this is that not all individuals 
show symptoms, thus the need for an asymptomatic stage. Our 
main contribution is the addition of asymptomatic individuals 
in a geographical SIR-type model. 

The models discussed in section II.B define different 
methods that can be incorporated into a geographical SEAIRD 
model. Each model shares a defined asymptomatic rate where 
a given proportion of the exposed population move to either 
infectious, or asymptomatic. We follow a method that allows 
for easy, efficient implementation where user can prototype 
different values without having to change more than the input 
parameters. To do so, we use a spatial modeling methodology, 
called Cell-DEVS [12]. 

D. Cell-DEVS and Cadmium 

Cell-DEVS [12] is a modeling methodology that allows 
defining cell spaces based on the Discrete Event Systems 
Specifications (DEVS) [29]. Cell-DEVS describes an n-
dimensional cell space where each cell represents a DEVS 
atomic model. The cell space containing the n cells is defined 
as a DEVS coupled model where each cell is connected to its 
neighboring cells, as in Figure 1. 

 

Fig. 1. Cell-DEVS model: (a) Atomic cell schematics; (b) 2-dimensional 
Cell-DEVS neighborhood 

 When a cell receives an input, the local computing 
function � is activated, this will compute the next state for the 
cell. This discrete-event approach only considers and 
computes active cells using a continuous time base. If there is 
a change in the cell’s state, the change is transmitted after a 
time delay d. In figure 1(b), we can see how a cell (center) will 
transmit information to the neighboring cells using a von 



 

 

Neumann neighborhood. Cell-DEVS accepts other 
neighborhoods and irregular topologies as well. Cell-DEVS 
inherits the modularity and hierarchical modeling ability of 
DEVS. This allows for models to better interact with other 
models, tools, datasets, and visualization tools, making it an 
easy, and efficient method to build complex cellular models. 

 There are different simulators to execute Cell-DEVS 
models [13]. In this research, we use the Cadmium tool [13], 
which allows users to define model inputs using JavaScript 
Object Notation (JSON), a data format to store and transmit 
large amounts of human readable data. JSON stores data in 
key-value pairs allowing for the simple representation of 
neighborhoods, their attributes, and their relationships. 
Cadmium allows the user to include complex geographical 
inputs that load into the model at run time resulting in a 
flexible model that allows for efficient rapid prototyping. 

III. MODEL SPECIFICATIONS 

Our proposed geographical SEAIRD model is based on 
[22], [28] by adding an asymptomatic state (A) as depicted in 
the diagram in Figure 2, which shows that a cell’s population 
starts in a susceptible state and then it can become exposed. 
From there, the exposed population will move to either 
asymptomatic or infectious. If asymptomatic, they will 
eventually become recovered, but if an individual is 
infectious, they can move to either recovered or deceased. 

 

Fig. 2. SEAIRD State Diagram 

The dotted line in Figure 2 from recovered to susceptible 
shows how a population can become re-susceptible after 
recovery. Each transition is based on their defined time 
behavior and described using the delay function. Exposed, 
Infectious, Asymptomatic and Recovered states have a 
defined set of days that a population can be within the state 
described by Te, Ti, Tai, and Tr. Each state has a defined state 
transition that occurs at each day within the state. The days 
within each state set of days is described by q = {1, 2, …, 
Tstate}. For example, ��,�� 
�
  , describes the proportion of 

asymptomatic cases for an age group in cell i at asymptomatic 
state q = {1, 2, …, Tai}, at time t. The asymptomatic state 
works similarly to the infectious state: an asymptomatic rate 
describes the proportion of the population that transitions 
from exposed to either infectious or asymptomatic. 

Our model uses k unique geographical cells. The 
proportion of a population’s age group a found in each state 
is described by: ��,�� , ��,�� , ��,�� , ��,�� , ��,�� , ��,�� , where i is the cell 

being described at time t. The state transitions are built using 
the Cell-DEVS transition and delay functions, which 
implement equations 3.1 – 3.12.  

Let us consider fa(q) as the fatality rate of infected stage q 
for age group a; λa(q) their virulence; μa(q) their mobility 
rate; εa(q) the incubation rate; γa(q) the recovery rate and φ as 
the asymptomatic infection rate. Then, cij is the geographical 
correlation factor between cells i and j; kij is the correction 
factor applied to both cells i and j to model disobedience. 
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 Eq (3.1) is used to calculate the proportion of deaths at a 
time t. The proportion of deaths next day is the total of current 
deaths plus the sum of the infectious population that died the 
day before. New deaths are equal to the newly deceased 
population moving from the infectious state multiplied by the 
fatality rate. The deceased transition does not consider 
asymptomatic infections as they do not lead to deaths. 
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 Equation (3.2) is used to calculate the proportion of newly 
exposed population. This is a result of the susceptible ones in 
contact with either the entire infectious population or the 
asymptomatic population of neighboring cells j. The first part 
of the equation calculates the proportion of a cell’s susceptible 
population exposed to an infectious individual (I) and the 
second part the proportion exposed to an asymptomatic 
individual (Ai). A defines the set of age groups in cell j, each 
age group is represented by b. Each cell’s population 
represented by Nj is divided into age groups (the subscript b). 
Each cell is related to its neighbor by a geographical 
correlation factor cij that describes the impact each 
neighboring cell has on a given cell, including virulence and 
mobility rates a given cell’s population has with its neighbors. 
Finally, kij defines a correction factor between cells i and j, 
applied to the infectious half of the equation to simulate 
different behavior for infectious and asymptomatic 
populations: we consider that asymptomatic individuals to be 
more carefree, thus they will expose more individuals. The 
correction factor kij is defined using the models disobedience 
factor d where kij=min(ki, kj). The correction for individual 
cells i and j is defined as kcell=d+(1-d)*mc. The infection 
correction factor mc is defined in the model as a function of 
the infection threshold (ITH) that triggers a specific mobility 
correction factor (cm)  and a hysteresis level (H).  
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 Equation (3.3) describes how the exposed population 
transitions to the infectious or asymptomatic state. The 
equation defines the exposed in stage q is equal to the exposed 
of the previous day multiplied by 1- εa(q-1). Where εa (q-1) 
defines the incubation rate for an age group a for state q – 1. 
The incubation rate defines the probability of the population 
moving to infectious or asymptomatic. 
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 Equation (3.4) describes the new infectious population 
that will occupy day 1. The equation considers the exposed 
population from all stages, and all age groups. As defined 
above in (3.3), a proportion of the exposed population moves 
to infectious or asymptomatic depending on the incubation 
rate εa. The rate at which the exposed population becomes 
either infectious, or asymptomatic is defined by asymptomatic 
rate φ. Thus, for the case of new infectious population the rate 
is defined as (1 – φ). 
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Equation (3.5) describes the portion of the infected 
population that moves to the next stage. The infectious 
population for stage q equals the population of infectious in 
the previous stage, q – 1 minus the population who move to 
either recovery or deceased. The portion of the population that 
move to the recovered or deceased states is defined by 
recovery rate γ and fatality rate � respectively. 
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 Equations (3.6 and 3.7) define the asymptomatic state 
behavior following the same rules described in (3.4) and (3.5). 
Equation (3.6) defines the proportion of the exposed 
population that moves to the asymptomatic state (here, the 
asymptomatic population rate remains as φ). Equation (3.7) 
follows the same rules defined when asymptomatic cases 
either move to the next stage q, recovered, or deceased. 
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 Equation (3.8) describes the proportion of infectious or 
asymptomatic populations that become recovered. The 
equation defines that the total number of recoveries is equal to 
the total number of recoveries from the previous day plus the 
newly recovered population. The current day recoveries are 
calculated by taking the proportion of infectious and 
asymptomatic infections that move to the recovered stage 
using rate γ. Finally, the equation checks for the population 
that is on the final day of either infectious or asymptomatic, if 
their population does not move to the deceased state, they are 
added to the recovered state.  
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Equations (3.9 and 3.10) are used only if re-susceptibility 
is not enabled. Once the recovered population reaches the 

final day of recovery, they remain there for the rest of the 
simulation time. 

��,����
�
 � ��,�� 
� − 1
 
3.11
�J12,3, … , 3K4  

 Equation (3.11) is an equation only used when re-
susceptibility is enabled, i.e., patients who are recovered will 
go through each day of recovery, when they reach the final 
day of recovery the population will move back into the 
susceptible population pool where they can be re-exposed. 

��,���� �
1 −  ∑ ��,����
�
 − ∑ ��,����
�
!F"#�!C"#�− ∑ ��,����
�
 −  ∑ ��,����
�
!K"#�!��"#� −��,����


3.12
  

 Equation (3.12) is a “special equation” needed for the 
integrity of the model. Since we know that any given 
population starts in the susceptible state (excluding the 
starting cell) then the population that is not in any other state 
should remain susceptible.  

The model is defined as a coupled Cell-DEVS where the 
cell space represents a geographical region, and each cell (of 
irregular topology) is a district in the city/province. It relates 
to its neighboring cells using an irregular topology. Each cell 
consists of a cell ID, a set of state variables, a model 
configuration, and neighboring cell’s correlation factors. 

IV. MODEL IMPLEMENTATION 

We implemented the equations defined in section III, and 
when all the geographical cells are defined, they are placed 
into a top level coupled cell model called 
geographical_coupled, with configuration seen in Figure 3.  

 

Fig. 3. SEAIRD Coupled Cell Diagram 

At runtime, the geographical_coupled model is initialized 
using cell’s data provided from in a JSON input file (using the 
methods described in the top model class 
cadmium::celldevs:cells_coupled<T,C,S,V>; Figure 3 shows 
how this coupled cell model is defined. At the bottom level of 
figure 3 the three structures define the inputs to the 
geographical cells. The SEAIRD structure defined the state 
variables that will hold the population as well as the infection 
correction factors and the disobedience factor (Figure 4). The 
simulation configuration structure defines the attributes used 
to characterize the disease being modelled including recovery 



 

 

rates, fatality rates and asymptomatic rates (Figure 5). The 
vicinity structure holds the information that defines the 
correlation factors between two cells (geographical_cell). The 
three structures are read in at run time to create the single 
parameterized model geographical_cell. The collection of 
geographical cells and their relationships define the 
geographical coupled model. 

struct seaird { 
 std::vector<double> age_group_proportions; 
 std::vector<double> susceptible; 
 std::vector<std::vector<double>> exposed; 
 std::vector<std::vector<double>> infected; 
 std::vector<std::vector<double>> asymptomatic; 
 std::vector<std::vector<double>> recovered; 

std::vector<double> fatalities;     
std::unordered_map<std::string,hysteresis_fact
or> hysteresis_factors; 

 double population; 

 std::vector<double> disobedient; ...4; 
Fig. 4. SEAIRD configuration code 

Each cell contains the relevant information defined in the 
SEAIRD configuration file. At run time, each cell has a 
unique population which is divided into described age groups. 
Each cell’s population will then be divided into one of the six 
states. If modelling the beginning of a pandemic, a single cell 
will hold the initial case(s) and the remaining cells will be 
100% susceptible. At t=0 the proportion of a cell’s population 
in each state is defined in by the values provided in the 
SEAIRD structure. Defining the SEAIRD structure at run 
time with user defined inputs allows users to choose the point 
of time they want to start a model (if they are interested in the 
middle of a pandemic they can tailor the input values to hold 
the number of individuals in each state at that time). 

struct simulation_config { 
 int prec_divider; 

using phase_rates = 
std::vector<std::vector<double>>; 

 phase_rates virulence_rates; 
 phase_rates incubation_rates; 
 phase_rates recovery_rates; 
 phase_rates mobility_rates; 
 phase_rates fatality_rates; 
 double asymptomatic_rates; 
 bool SIIRS_model = true; 
}; 

Fig. 5. Simulation configuration 

In figure 5 the simulation configuration is declared; these 
values are used to change the ways a population transferred 
from one state to another. These structures define the 
geographical_cell atomic model presented in Figure 3. A 
geographical_cell atomic model is defined for each 
geographical cell in the model, these cells make up a 
geographical_coupled model where each cell is connected by 
a correlation factor. Finally, this geographical_coupled model 
is defined by methods found in class 
cadmium::celldevs::cells_coupled<T,C,S,V>. 

V. CASE STUDY: ONTARIO PUBLIC HEALTH 

The SEAIRD results presented in this section are 
generated using source data from the 34 Ontario public health 
units where the population is generated using census data [30]. 

A configuration file is built using a geo package (Geopandas 
[31]) to determine shared boundaries (correlation factor) 
between each public health unit. Figures 6-9 were created 
using the graphing tools in [22], R [32] and plotly [33]. The 
implementation of the model is available at 
https://github.com/SimulationEverywhere-

Models/Geography-Based-SEAIRDS. The results presented in 
this section show and compare the effect the asymptomatic 
state has when added to the simulation. The parameters used 
in this study are shown in Table 1: 

TABLE I.  TEST CASE CONFIGURATION 

Parameter Value 

Population Varies per cell based on census data [34] 

Age Groups [0.216, 0.279, 0.268, 0.193, 0.044] [34] 

Disobedience [0.29, 0.25, 0.23, 0.21, 0.24]  [35], [36] 

Asymp. Rate Varies per simulation (See figure 6-8) 

Virulence  0.1 across all states and age groups 

Incubation  14-day profile [28] 

Mobility Rates  1.0 across all states and age groups 

Recovery Rates 0.07 across all states and age groups 

Fatality Rates 0.005 across all states and age groups 

Infection 
correction 

factors 
(lockdown) 

0.001:[0.60, 0.0008], 0.005:[0.50, 0.003], 
0.01: [0.40, 0.005], 0.03: [0.30, 0.015], 

0.08: [0.20, 0.0005], 0.15: [0.1, 0.08], 0.20: 
[0.01, 0.12] 

We start with the population of each geographical area. 
We then use a vector of values to represent the proportion of 
the total population in each age group. Age groups are an 
abstract set of values defined by the modeler; in our case, 
individuals 0-12, 13-19; 20-44; 45-65, and over 65 years old. 
Disobedience follows the same format as age groups where 
the values in the vector represent the proportion of each age 
group that is disobedient to lockdowns. These values were 
estimated using data gathered from [35], [36]. The 
asymptomatic rate is the proportion of the exposed population 
that become asymptomatic (the rest become infectious). The 
virulence rate represents the rate at which the disease spreads, 
the value represents the amount of age groups population in 
contact with the infected population per day of the infection. 
Incubation rate is the proportion of the exposed population 
that become infectious or asymptomatic, defined using a 14-
day profile where each day a proportion of the exposed 
population will move to the next state [28]. Mobility rates 
define the freedom of the population to move (1.0 mobility 
rating means the population can move freely). Mobility rates 
are defined for each age group for each day of the infection, it 
is assumed that mobility rates are not restricted at all at the 
beginning of the pandemic. Recovery rates define the 
proportion of an age group infected population that will 
recover each day of the infection. Fatality rates defines the 
proportion of an age group infected population that will move 
to the deceased state on each day. Infection correction factors 
describe the proportion of the population that needs to be 
infected before a lockdown is put in place. The values can be 
described as follows: ‘Proportion of population infected to 
start lockdown’: [‘mobility modifier’, ‘Proportion of 
population infected to life lockdown’] where mobility 
modifier reduces the mobility of a cell by the given value.  



 

 

Virulence rates, recovery rates, fatality rates and infection 
correction factors were informed by data gathered at [2]. The 
values were evaluated and slightly modified; the final values 
shown in Table 1 provided the most accurate results in testing. 

Figure 6 shows the simulation results with 0% 
asymptomatic cases. The results show the steady rise of 
exposed individuals (orange line), then 1-14 days after their 
exposer they become infected (red line). Our results show the 
initial wave rises and settles in a little over 350 days with 
approximately 8% of the population becoming infected. 

 

Fig. 6. SEAIRD Model - 0% Asymptomatic 

Next, we studied the effect of an 80% asymptomatic rate 
using the same parameters. Figure 7 shows a lower rate of 
infectious carriers and a higher rate of asymptomatic carriers.  

 

Fig. 7. SEAIRD Model - 80% asymptomatic 

With this higher rate of asymptomatic carriers, the total 
exposed population reaches a higher peak than it had without 
asymptomatic cases (approximately 110% more exposures 
occur). This higher exposed count is due to the different 
asymptomatic and infectious carriers have on the susceptible 
population. Since the asymptomatic carriers travel more than 
the infectious carriers more of the population is exposed to 
them, causing higher overall infections. The initial curve rises 
and settles in approximately 250 days this is 100 days less that 
the model with no asymptomatic infections. This shows that 
the asymptomatic carriers expose the susceptible population 
at a much higher rate than the model showing no 
asymptomatic cases. We can see approximately 14% of the 
population become asymptomatic carriers with an additional 
4% being infectious carriers. Although in this case we can see 
higher overall rates of infections, the asymptomatic infections 
are less lethal, leading to less deaths and more recoveries. We 
see this difference when analyzing a single neighborhood cell 
in figures 8 and 9. 

Figure 8 shows a single cell and how its population 
transitions through the states with a 0% asymptomatic rate. It 
should be noted the cell is still exposed to its neighboring 

cells. When examining the graph at day 133 we can see a 
cumulative exposed population of 7.1%, cumulative 
infectious population of 5.65%, cumulative fatalities of 0.4%, 
and since we have no asymptomatic infections, an 
asymptomatic infected population of 0%.  

 

Fig. 8. Single Cell SEAIRD - 0% Asymptomatic 

If we then compare this to a graph showing the curves with 
an asymptomatic rate of 80% (Figure 9), we can see that at 
day 133 we have a cumulative exposed population of 27.7%, 
cumulative infectious population of 4.7%, cumulative 
fatalities of 0.02% and an asymptomatic population of 19.4%. 
We can see that the exposed grown to 27.7%, from 7.1%. This 
20% increase can be accredited to the asymptomatic carriers 
spreading the disease to the surrounding neighbors at a higher 
rate than the infectious population. We can also see that we 
have fewer deaths, linked to the fewer infectious cases. 

 

Fig. 9. Single Cell SEAIRD - 80% Asymptomatic 

We can now simulate the effect a “invisible” population 
of disease carriers may have on a pandemic combined with 
the advantage of having a model that includes geographical 
aspects. If 80% of total COVID-19 cases are asymptomatic 
and the case counts show 5% of a population are infected, we 
can expect that 20% more of the population is also infected 
but not showing symptoms and not aware they are infected. 
These asymptomatic individuals will be spreading the disease 
to the healthy population, causing rises in the number of 
exposed individuals, resulting in more infectious. Although a 
high asymptomatic rate will lead to more overall cases, these 
cases are not as deadly, this is due to asymptomatic cases not 
showing symptoms and in the case of COVID-19 not leading 
to death. If we were to model a disease where asymptomatic 
cases could lay dormant for years and later lead to death we 
would see more interesting fatality results. 



 

 

VI. CONCLUSIONS 

We presented a model that allows users to create rapid 
simulation prototypes to simulate how much of an impact 
asymptomatic cases would have on disease case counts. 
Another important note about the model, although it has been 
built around the COVID-19 pandemic, it can be used for any 
other disease. This can be done in a quick, efficient manner. 
If users have the relevant information for a disease along with 
the asymptomatic rate at which a disease transmits, they can 
simply change the parameters and re-run the model. The 
model also gives the users the ability to efficiently adapt the 
geographical level that the model is being run on.  

Future adaptations plan to incorporate asymptomatic 
disease transmission rates (modified virulence rates), 
asymptomatic rates by age group, a more accurate susceptible 
to exposed transition and new compartments to represent 
individuals that are vaccinated, and therefore less susceptible 
to the disease. The model can be easily adapted to simulate 
variants of concern by tuning the test case configuration data 
found in Table 1. In future adaptations variants of concern will 
be addressed in a formal manner allowing for the simulation 
of single and multiple variants of concern.  
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